

CS-570
 Statistical Signal Processing

Lecture 3: Review of Convex Optimization

Spring Semester 2019

Grigorios Tsagkatakis

Today's Objectives

- Review of convex optimization

Disclaimer: Material used:

- Convex Optimization - S. Boyd and L. Vandenberghe http://web.stanford.edu/~boyd/cvxbook/
- Matrix Calculus - Po-Chen Wu

Matrix calculus

- The derivative of $\mathbf{y}=\left[\begin{array}{c}y_{1} \\ y_{2} \\ \vdots \\ y_{m}\end{array}\right]$, by x is written as:

$$
\frac{\partial \mathbf{y}}{\partial \mathrm{x}}=\left[\begin{array}{c}
\frac{\partial y_{1}}{\partial x} \\
= \\
\frac{\text { def }}{} \\
\frac{\partial y_{2}}{\partial x} \\
\vdots \\
\frac{\partial y_{m}}{\partial x}
\end{array}\right]
$$

- The derivative of y by $\mathbf{x}=\left[\begin{array}{c}x_{1} \\ x_{2} \\ \vdots \\ x_{n}\end{array}\right]$ is written as:

$$
\left.\frac{\partial \mathrm{y}}{\partial \mathbf{x}} \stackrel{\text { def }}{ } \stackrel{\partial y}{\frac{\partial y}{\partial x_{1}}} \frac{\frac{\partial y}{\partial x_{2}}}{} \quad \cdots \quad \frac{\partial y}{\partial x_{n}}\right]
$$

Matrix calculus

- The derivative of $\mathbf{y}=\left[\begin{array}{c}y_{1} \\ y_{2} \\ \vdots \\ y_{m}\end{array}\right]$ with respect to $\mathbf{x}=\left[\begin{array}{c}x_{1} \\ x_{2} \\ \vdots \\ x_{n}\end{array}\right]$:

$$
\frac{\partial \mathbf{y}}{\partial \mathbf{x}}=\left[\begin{array}{cccc}
\frac{\partial y_{1}}{\partial x_{1}} & \frac{\partial y_{1}}{\partial x_{2}} & & \frac{\partial y_{1}}{\partial x_{n}} \\
\frac{\partial y_{2}}{\partial x_{1}} & \frac{\partial y_{2}}{\partial x_{2}} & & \frac{\partial y_{2}}{\partial x_{n}} \\
\vdots & & \ddots & \vdots \\
\frac{\partial y_{m}}{\partial x_{1}} & \frac{\partial y_{m}}{\partial x_{2}} & \cdots & \frac{\partial y_{m}}{\partial x_{n}}
\end{array}\right]
$$

- Also known as the Jacobian matrix

Example

- Given $\mathbf{y}=\left[\begin{array}{l}y_{1} \\ y_{2}\end{array}\right], \mathbf{x}=\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]$, and $y_{1}=x_{1}^{2}-2 x_{2}, y_{2}=x_{3}^{2}-4 x_{2}$, the Jacobian matrix $\frac{\partial \mathrm{y}}{\partial \mathrm{x}}$ is:

$$
\frac{\partial \mathbf{y}}{\partial \mathbf{x}}=\left[\begin{array}{lll}
\frac{\partial y_{1}}{\partial x_{1}} & \frac{\partial y_{1}}{\partial x_{2}} & \frac{\partial y_{1}}{\partial x_{3}} \\
\frac{\partial y_{2}}{\partial x_{1}} & \frac{\partial y_{2}}{\partial x_{2}} & \frac{\partial y_{2}}{\partial x_{3}}
\end{array}\right]=\left[\begin{array}{ccc}
2 x_{1} & -2 & 0 \\
0 & -4 & 2 x_{3}
\end{array}\right]
$$

- The derivative of a matrix function \mathbf{Y} by a scalar x is known as the tangent matrix and is given by

$$
\frac{\partial \mathbf{Y}}{\partial x} \stackrel{\text { def }}{=}\left[\begin{array}{cccc}
\frac{\partial Y_{11}}{\partial x} & \frac{\partial Y_{12}}{\partial x} & & \frac{\partial Y_{1 n}}{\partial x} \\
\frac{\partial Y_{21}}{\partial x} & \frac{\partial Y_{22}}{\partial x} & \cdots & \frac{\partial Y_{2 n}}{\partial x} \\
& \vdots & \ddots & \vdots \\
\frac{\partial Y_{m 1}}{\partial x} & \frac{\partial Y_{m 2}}{\partial x} & \cdots & \frac{\partial Y_{m n}}{\partial x}
\end{array}\right]
$$

- The derivative of a scalar y function by a matrix \mathbf{X} is known as the gradient matrix and is given by

$$
\frac{\partial y}{\partial \mathbf{X}} \stackrel{\text { def }}{=}\left[\begin{array}{cccc}
\frac{\partial y}{\partial X_{11}} & \frac{\partial y}{\partial X_{21}} & & \frac{\partial y}{\partial X_{m 1}} \\
\frac{\partial y}{\partial X_{12}} & \frac{\partial y}{\partial X_{22}} & & \frac{\partial y}{\partial X_{m 2}} \\
& \vdots & \ddots & \vdots \\
\frac{\partial y}{\partial X_{1 n}} & \frac{\partial y}{\partial X_{2 n}} & \cdots & \frac{\partial y}{\partial X_{m n}}
\end{array}\right]
$$

List of Differentiation

	Scalar y		Vector y (size m)		Matrix $\mathbf{Y}($ size $m \times n)$	
	Notatio n	Type	Notation	Type	Notation	Type
Scalar x	$\frac{\partial y}{\partial x}$	scalar	$\frac{\partial \mathbf{y}}{\partial x}$	size-m column vector	$\frac{\partial \mathbf{Y}}{\partial x}$	$\begin{aligned} & m \times n \\ & \text { matrix } \end{aligned}$
Vector \mathbf{x} (size n)	$\frac{\partial y}{\partial \mathbf{x}}$	size-n row vector	$\frac{\partial \mathbf{y}}{\partial \mathbf{x}}$	$\begin{aligned} & m \times n \\ & \text { matrix } \end{aligned}$	$\frac{\partial \mathbf{Y}}{\partial \mathbf{x}}$	-
$\begin{aligned} & \text { Matrix } \mathbf{X} \\ & (\text { size } p \times q) \end{aligned}$	$\frac{\partial y}{\partial \mathbf{X}}$	$\begin{aligned} & q \times p \\ & \text { matrix } \end{aligned}$	$\frac{\partial \mathbf{y}}{\partial \mathbf{X}}$	-	$\frac{\partial \mathbf{Y}}{\partial \mathbf{X}}$	-

Derivative Formulas

\mathbf{y}	$\frac{\partial \mathrm{y}}{\partial \mathrm{x}}$
$\mathbf{A x}$	\mathbf{A}
$\mathbf{x}^{T} \mathbf{A}$	\mathbf{A}^{T}
$\mathbf{x}^{T} \mathbf{x}$	$2 \mathbf{x}^{T}$
$\mathbf{x}^{T} \mathbf{A} \mathbf{x}$	$\mathbf{x}^{T} \mathbf{A}+\mathbf{x}^{T} \mathbf{A}^{T}$

Hint: Derive \mathbf{x}

- If you have to differentiate \mathbf{x}^{T}, transpose the rest.
- If you have two x-terms, differentiate them separately in turn and then sum up the two derivatives.

Chain rule

- Let $\mathbf{x}=\left[\begin{array}{c}x_{1} \\ x_{2} \\ \vdots \\ x_{n}\end{array}\right], \mathbf{y}=\left[\begin{array}{c}y_{1} \\ y_{2} \\ \vdots \\ y_{m}\end{array}\right]$, and $\mathbf{z}=\left[\begin{array}{c}z_{1} \\ z_{2} \\ \vdots \\ z_{r}\end{array}\right]$, where \mathbf{z} is a function of \mathbf{y}, which is in turn a function of \mathbf{x}. Then

$$
\begin{aligned}
& \frac{\partial \mathbf{z}}{\partial \mathbf{x}} \stackrel{\text { def }}{=}\left[\begin{array}{cccc}
\frac{\partial z_{1}}{\partial x_{1}} & \frac{\partial z_{1}}{\partial x_{2}} & & \frac{\partial z_{1}}{\partial x_{n}} \\
\frac{\partial z_{2}}{\partial x_{1}} & \frac{\partial z_{2}}{\partial x_{2}} & & \frac{\partial z_{2}}{\partial x_{n}} \\
\vdots & & \ddots & \vdots \\
\frac{\partial z_{r}}{\partial x_{1}} & \frac{\partial z_{r}}{\partial x_{2}} & \cdots & \frac{\partial z_{r}}{\partial x_{n}}
\end{array}\right], \\
& \text { where } \frac{\partial z_{i}}{\partial x_{j}}=\sum_{k=1}^{m} \frac{\partial z_{i}}{\partial y_{k}} \frac{\partial y_{k}}{\partial x_{j}}
\end{aligned}\left\{\begin{array}{l}
i=1,2, \cdots, r \\
j=1,2, \cdots, n
\end{array}\right]
$$

Chain rule

$$
\cdot \frac{\partial \mathbf{z}}{\partial \mathbf{x}}=\left[\begin{array}{cccc}
\sum \frac{\partial z_{1}}{\partial y_{k}} \frac{\partial y_{k}}{\partial x_{1}} & \sum \frac{\partial z_{1}}{\partial y_{k}} \frac{\partial y_{k}}{\partial x_{2}} & & \sum \frac{\partial z_{1}}{\partial y_{k}} \frac{\partial y_{k}}{\partial x_{n}} \\
\sum \frac{\partial z_{2}}{\partial y_{k}} \frac{\partial y_{k}}{\partial x_{1}} & \sum \frac{\partial z_{2}}{\partial y_{k}} \frac{\partial y_{k}}{\partial x_{2}} & & \sum \frac{\partial z_{2}}{\partial y_{k}} \frac{\partial y_{k}}{\partial x_{n}} \\
\vdots & & \ddots & \vdots \\
\sum \frac{\partial z_{r}}{\partial y_{k}} \frac{\partial y_{k}}{\partial x_{1}} & \sum \frac{\partial z_{r}}{\partial y_{k}} \frac{\partial y_{k}}{\partial x_{2}} & \cdots & \sum \frac{\partial z_{r}}{\partial y_{k}} \frac{\partial y_{k}}{\partial x_{n}}
\end{array}\right]
$$

$$
=\left[\begin{array}{cccc}
\frac{\partial z_{1}}{\partial y_{1}} & \frac{\partial z_{1}}{\partial y_{2}} & \ldots & \frac{\partial z_{1}}{\partial y_{m}} \\
\frac{\partial z_{2}}{\partial y_{1}} & \frac{\partial z_{2}}{\partial y_{2}} & \cdots & \frac{\partial z_{2}}{\partial y_{m}} \\
\vdots & \ddots & \vdots \\
\frac{\partial z_{r}}{\partial y_{1}} & \frac{\partial z_{r}}{\partial y_{2}} & \cdots & \frac{\partial z_{r}}{\partial y_{m}}
\end{array}\right]\left[\begin{array}{cccc}
\frac{\partial y_{1}}{\partial x_{1}} & \frac{\partial y_{1}}{\partial x_{2}} & & \frac{\partial y_{1}}{\partial x_{n}} \\
\frac{\partial y_{2}}{\partial x_{1}} & \frac{\partial y_{2}}{\partial x_{2}} & & \frac{\partial y_{2}}{\partial x_{n}} \\
\vdots & & \ddots & \vdots \\
\frac{\partial y_{m}}{\partial x_{1}} & \frac{\partial y_{m}}{\partial x_{2}} & \cdots & \frac{\partial y_{m}}{\partial x_{n}}
\end{array}\right]=\frac{\partial \mathrm{z}}{\partial y} \frac{\partial \mathrm{y}}{\partial \mathrm{x}}
$$

The Matrix Differential

- For a scalar function $f(\mathbf{x})$, where \mathbf{x} is an n-vector, the ordinary differential of multivariate calculus is defined as

$$
d f=\sum_{i=1}^{n} \frac{\partial f}{\partial x_{i}} d x_{i}
$$

- In harmony with this formula, we define the differential of an $m \times n$ matrix $\mathbf{X}=\left[X_{i j}\right]$ to be

$$
d \mathbf{X} \xlongequal{\text { def }}=\left[\begin{array}{cccc}
d X_{11} & d X_{12} & & d X_{1 n} \\
d X_{21} & d X_{22} & \cdots & d X_{2 n} \\
& \vdots & \ddots & \vdots \\
d X_{m 1} & d X_{m 2} & \cdots & d X_{m n}
\end{array}\right]
$$

The Matrix Differential

- This definition complies with the multiplicative and associative rules

$$
d(\alpha \mathbf{X})=\alpha d \mathbf{X} \quad d(\mathbf{X}+\mathbf{Y})=d \mathbf{X}+d \mathbf{Y}
$$

- If \mathbf{X} and \mathbf{Y} are product-conforming matrices, it can be verified that the differential of their product is

$$
d(\mathbf{X Y})=(d \mathbf{X}) \mathbf{Y}+\mathbf{X}(d \mathbf{Y})
$$

Hessian matrix

- Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ and assume all second partial derivative exist in the domain
- The Hessian matrix $\mathbf{H} \in \mathbb{R}^{n \times n}$ is defined as

$$
\mathbf{H}=\left[\begin{array}{cccc}
\frac{\partial^{2} f}{\partial x_{1}^{2}} & \frac{\partial^{2} f}{\partial x_{1} \partial x_{2}} & \cdots & \frac{\partial^{2} f}{\partial x_{1} \partial x_{n}} \\
\frac{\partial^{2} f}{\partial x_{2} \partial x_{1}} & \frac{\partial^{2} f}{\partial x_{2}^{2}} & \cdots & \frac{\partial^{2} f}{\partial x_{2} \partial x_{n}} \\
\vdots & \vdots & \ddots & \vdots \\
\frac{\partial^{2} f}{\partial x_{n} \partial x_{1}} & \frac{\partial^{2} f}{\partial x_{n} \partial x_{2}} & \cdots & \frac{\partial^{2} f}{\partial x_{n}^{2}}
\end{array}\right] .
$$

Mathematical optimization

(mathematical) optimization problem

```
minimize }\mp@subsup{f}{0}{}(x
subject to fi}\mp@subsup{f}{i}{}(x)\leq\mp@subsup{b}{i}{},\quadi=1,\ldots,
```

- $x=\left(x_{1}, \ldots, x_{n}\right)$: optimization variables
- $f_{0}: \mathbf{R}^{n} \rightarrow \mathbf{R}$: objective function
- $f_{i}: \mathbf{R}^{n} \rightarrow \mathbf{R}, i=1, \ldots, m$: constraint functions
solution or optimal point x^{\star} has smallest value of f_{0} among all vectors that satisfy the constraints

Solving optimization problems

general optimization problem

- very difficult to solve
- methods involve some compromise, e.g., very long computation time, or not always finding the solution (which may not matter in practice)
exceptions: certain problem classes can be solved efficiently and reliably
- least-squares problems
- linear programming problems
- convex optimization problems

Least squares

$$
\operatorname{minimize} \quad\|A x-b\|_{2}^{2}
$$

solving least-squares problems

- analytical solution: $x^{\star}=\left(A^{T} A\right)^{-1} A^{T} b$
- reliable and efficient algorithms and software
- computation time proportional to $n^{2} k\left(A \in \mathbf{R}^{k \times n}\right)$; less if structured
- a mature technology

using least-squares

- least-squares problems are easy to recognize
- a few standard techniques increase flexibility (e.g., including weights, adding regularization terms)

Linear programming

$$
\begin{array}{ll}
\operatorname{minimize} & c^{T} x \\
\text { subject to } & a_{i}^{T} x \leq b_{i}, \quad i=1, \ldots, m
\end{array}
$$

solving linear programs

- no analytical formula for solution
- reliable and efficient algorithms and software
- computation time proportional to $n^{2} m$ if $m \geq n$; less with structure
- a mature technology

using linear programming

- not as easy to recognize as least-squares problems
- a few standard tricks used to convert problems into linear programs (e.g., problems involving ℓ_{1} - or ℓ_{∞}-norms, piecewise-linear functions)

Convex optimization problems

```
minimize }\mp@subsup{f}{0}{}(x
subject to }\mp@subsup{f}{i}{}(x)\leq\mp@subsup{b}{i}{},\quadi=1,\ldots,
```

- objective and constraint functions are convex:

$$
f_{i}(\alpha x+\beta y) \leq \alpha f_{i}(x)+\beta f_{i}(y)
$$

if $\alpha+\beta=1, \alpha \geq 0, \beta \geq 0$

- includes least-squares problems and linear programs as special cases

Nonlinear optimization

traditional techniques for general nonconvex problems involve compromises
local optimization methods (nonlinear programming)

- find a point that minimizes f_{0} among feasible points near it
- fast, can handle large problems
- require initial guess
- provide no information about distance to (global) optimum

global optimization methods

- find the (global) solution
- worst-case complexity grows exponentially with problem size
these algorithms are often based on solving convex subproblems

History of convex optimization

theory (convex analysis): 1900-1970

algorithms

- 1947: simplex algorithm for linear programming (Dantzig)
- 1970s: ellipsoid method and other subgradient methods
- 1980s \& 90s: polynomial-time interior-point methods for convex optimization (Karmarkar 1984, Nesterov \& Nemirovski 1994)
- since 2000s: many methods for large-scale convex optimization

applications

- before 1990: mostly in operations research, a few in engineering
- since 1990: many applications in engineering (control, signal processing, communications, circuit design, . . .)
- since 2000s: machine learning and statistics

Affine set

line through x_{1}, x_{2} : all points

$$
x=\theta x_{1}+(1-\theta) x_{2} \quad(\theta \in \mathbf{R})
$$

affine set: contains the line through any two distinct points in the set
example: solution set of linear equations $\{x \mid A x=b\}$
(conversely, every affine set can be expressed as solution set of system of linear equations)

Convex sets

Definition
A set $C \subseteq \mathbb{R}^{n}$ is convex if for $x, y \in C$ and any $\alpha \in[0,1]$,

$$
\alpha x+(1-\alpha) y \in C .
$$

Examples

- All of \mathbb{R}^{n} (obvious)
- Non-negative orthant, \mathbb{R}_{+}^{n} : let $x \succeq 0, y \succeq 0$, clearly $\alpha x+(1-\alpha) y \succeq 0$.
- Norm balls: let $\|x\| \leq 1,\|y\| \leq 1$, then

$$
\|\alpha x+(1-\alpha) y\| \leq\|\alpha x\|+\|(1-\alpha) y\|=\alpha\|x\|+(1-\alpha)\|y\| \leq 1 .
$$

Examples

- Affine subspaces: $A x=b, A y=b$, then

$$
A(\alpha x+(1-\alpha) y)=\alpha A x+(1-\alpha) A y=\alpha b+(1-\alpha) b=b .
$$

Polyhedra

solution set of finitely many linear inequalities and equalities
$A x \preceq b, \quad C x=d$
$\left(A \in \mathbf{R}^{m \times n}, C \in \mathbf{R}^{p \times n}, \preceq\right.$ is componentwise inequality $)$

polyhedron is intersection of finite number of halfspaces and hyperplanes

Convex combination and convex hull

convex combination of x_{1}, \ldots, x_{k} : any point x of the form

$$
x=\theta_{1} x_{1}+\theta_{2} x_{2}+\cdots+\theta_{k} x_{k}
$$

with $\theta_{1}+\cdots+\theta_{k}=1, \theta_{i} \geq 0$
convex hull conv S : set of all convex combinations of points in S

Examples

- Arbitrary intersections of convex sets: let C_{i} be convex for $i \in \mathcal{I}$, $C=\bigcap_{i} C_{i}$, then

$$
x \in C, y \in C \quad \Rightarrow \quad \alpha x+(1-\alpha) y \in C_{i} \forall i \in \mathcal{I}
$$

so $\alpha x+(1-\alpha) y \in C$.

Convex functions

A function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is convex if for $x, y \in \operatorname{dom} f$ and any $\alpha \in[0,1]$,

$$
f(\alpha x+(1-\alpha) y) \leq \alpha f(x)+(1-\alpha) f(y) .
$$

Examples on R^{n} and $R^{m \times n}$

affine functions are convex and concave; all norms are convex examples on \mathbf{R}^{n}

- affine function $f(x)=a^{T} x+b$
- norms: $\|x\|_{p}=\left(\sum_{i=1}^{n}\left|x_{i}\right|^{p}\right)^{1 / p}$ for $p \geq 1 ;\|x\|_{\infty}=\max _{k}\left|x_{k}\right|$
examples on $\mathbf{R}^{m \times n}$ ($m \times n$ matrices)
- affine function

$$
f(X)=\operatorname{tr}\left(A^{T} X\right)+b=\sum_{i=1}^{m} \sum_{j=1}^{n} A_{i j} X_{i j}+b=<\boldsymbol{A}, \boldsymbol{X}>+\boldsymbol{b}
$$

- spectral (maximum singular value) norm

$$
f(X)=\|X\|_{2}=\sigma_{\max }(X)=\left(\lambda_{\max }\left(X^{T} X\right)\right)^{1 / 2}
$$

Examples

Sets:

convex

not convex

and functions:

路

First order convexity conditions

Theorem
Suppose $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is differentiable. Then f is convex if and only if for all $x, y \in \operatorname{dom} f$

$$
f(y) \geq f(x)+\nabla f(x)^{T}(y-x)
$$

First order convexity conditions

Definition

The subgradient set, or subdifferential set, $\partial f(x)$ of f at x is

$$
\partial f(x)=\left\{g: f(y) \geq f(x)+g^{T}(y-x) \text { for all } y\right\} .
$$

Theorem
$f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is convex if and only if it has non-empty subdifferential set everywhere.

Second order convexity conditions

If $f(x)$ is twice continuously differentiable, then

$$
f \text { is convex } \quad \Leftrightarrow \quad \nabla^{2} f(x) \geq 0 \text { for all } x \in \Re^{n} .
$$

2nd-order conditions: for twice differentiable f with convex domain

- f is convex if and only if

$$
\nabla^{2} f(x) \succeq 0 \quad \text { for all } x \in \operatorname{dom} f
$$

- if $\nabla^{2} f(x) \succ 0$ for all $x \in \operatorname{dom} f$, then f is strictly convex

Examples

Non-convex

$$
\begin{gathered}
1-\|x\| \\
\cos \left(e^{T} x\right) \\
x^{T} A x, A \nsupseteq 0 \\
\|x\|^{3}
\end{gathered}
$$

Non-differentiable convex
Differentiable convex

$$
\|x\|
$$

$$
\|x\|_{1}
$$

$$
\begin{gathered}
x^{T} A x, A \geq 0 \\
e^{-\|x\|^{2}}
\end{gathered}
$$

$$
\max \left\{\|x\|^{2}, e^{T} x\right\}
$$

$$
-\log \left(t^{2}-\|x\|^{2}\right)
$$

$$
\|x\|_{1}^{2}
$$

$$
-\log \operatorname{det}(X)
$$

Properties of Convex functions

- Convexity over all lines:

$$
f(x) \text { is convex } \Leftrightarrow f\left(x_{0}+t h\right) \text { is convex in } t \text { for all } x_{0} \text { and } h
$$

- Positive multiple:

$$
f(x) \text { is convex } \quad \Leftrightarrow \quad \alpha f(x) \text { is convex, for all } \alpha \geq 0
$$

- Sum of convex functions:

$$
f_{1}(x), f_{2}(x) \text { convex } \Rightarrow f_{1}(x)+f_{2}(x) \text { is convex }
$$

- Pointwise maximum:

$$
f_{1}(x), f_{2}(x) \text { convex } \Rightarrow \max \left\{f_{1}(x), f_{2}(x)\right\} \text { is convex }
$$

- Affine transformation of domain:

$$
f(x) \text { is convex } \Rightarrow f(A x+b) \text { is convex }
$$

Some Commonly Used Convex Functions

- Piecewise-linear functions: $\max _{i}\left\{a_{i}^{T} x+b_{i}\right\}$ is convex in x
- Quadratic functions: $f(x)=x^{T} Q x+2 q^{T} x+c$ is convex iff $Q \geq 0$
- Piecewise-quadratic functions: $\max _{i}\left\{x^{T} Q_{i} x+q_{i}^{T} x+c_{i}\right\}$ is convex in x if $Q_{i} \geq 0$
- Norm functions: $\|x\|_{k}=\left(\sum_{i=1}^{n}\left|x_{i}\right|^{k}\right)^{1 / k}$, where $k \in[1, \infty)$
- Convex functions over matrices: $\operatorname{Tr}(X), \lambda_{\max }(X)$ are convex on $X=X^{T}$; and $-\log \operatorname{det}(X)$ is convex on the set $\left\{X \mid X=X^{T}, X \geq 0\right\}$
- Logarithmic barrier functions: $f(x)=\sum_{i=1}^{m} \log \left(b_{i}-a_{i}^{T} x\right)^{-1}$ is convex over $\mathcal{P}=\left\{x \mid a_{i}^{T} x \leq b_{i}, 1 \leq i \leq m\right\}$

Convex Optimization Problems

$$
\begin{array}{ll}
\operatorname{minimize} & f_{0}(x) \\
\text { subject to } & f_{i}(x) \leq 0, \quad i=1, \ldots, m \\
& h_{i}(x)=0, \quad i=1, \ldots, p
\end{array}
$$

- $x \in \mathbf{R}^{n}$ is the optimization variable
- $f_{0}: \mathbf{R}^{n} \rightarrow \mathbf{R}$ is the objective or cost function
- $f_{i}: \mathbf{R}^{n} \rightarrow \mathbf{R}, i=1, \ldots, m$, are the inequality constraint functions
- $h_{i}: \mathbf{R}^{n} \rightarrow \mathbf{R}$ are the equality constraint functions optimal value:

$$
p^{\star}=\inf \left\{f_{0}(x) \mid f_{i}(x) \leq 0, i=1, \ldots, m, h_{i}(x)=0, i=1, \ldots, p\right\}
$$

- $p^{\star}=\infty$ if problem is infeasible (no x satisfies the constraints)
- $p^{\star}=-\infty$ if problem is unbounded below

A set T of real numbers (red and green circles), a subset S of T (green circles), and the infimum of S. Note that for finite, totally ordered sets the infimum and the minimum are equal.

Optimal and locally optimal points

x is feasible if $x \in \operatorname{dom} f_{0}$ and it satisfies the constraints
a feasible x is optimal if $f_{0}(x)=p^{\star} ; X_{\text {opt }}$ is the set of optimal points
x is locally optimal if there is an $R>0$ such that x is optimal for

```
minimize (over z) fon
subject to
fi(z)\leq0,\quadi=1,\ldots,m,\quadhi(z)=0,\quadi=1,\ldots,p
|z-x||2\leqR
```

examples (with $n=1, m=p=0$)

- $f_{0}(x)=1 / x, \operatorname{dom} f_{0}=\mathbf{R}_{++}: p^{\star}=0$, no optimal point
- $f_{0}(x)=-\log x, \operatorname{dom} f_{0}=\mathbf{R}_{++}: p^{\star}=-\infty$
- $f_{0}(x)=x \log x, \operatorname{dom} f_{0}=\mathbf{R}_{++}: p^{\star}=-1 / e, x=1 / e$ is optimal
- $f_{0}(x)=x^{3}-3 x, p^{\star}=-\infty$, local optimum at $x=1$

Feasibility problem

$$
\begin{array}{ll}
\text { find } & x \\
\text { subject to } & f_{i}(x) \leq 0, \quad i=1, \ldots, m \\
& h_{i}(x)=0, \quad i=1, \ldots, p
\end{array}
$$

can be considered a special case of the general problem with $f_{0}(x)=0$:

$$
\begin{array}{ll}
\operatorname{minimize} & 0 \\
\text { subject to } & f_{i}(x) \leq 0, \quad i=1, \ldots, m \\
& h_{i}(x)=0, \quad i=1, \ldots, p
\end{array}
$$

- $p^{\star}=0$ if constraints are feasible; any feasible x is optimal
- $p^{\star}=\infty$ if constraints are infeasible

Convex optimization problem

standard form convex optimization problem

$$
\begin{array}{ll}
\operatorname{minimize} & f_{0}(x) \\
\text { subject to } & f_{i}(x) \leq 0, \quad i=1, \ldots, m \\
& a_{i}^{T} x=b_{i}, \quad i=1, \ldots, p
\end{array}
$$

- $f_{0}, f_{1}, \ldots, f_{m}$ are convex; equality constraints are affine
- problem is quasiconvex if f_{0} is quasiconvex (and f_{1}, \ldots, f_{m} convex)
often written as

$$
\begin{array}{ll}
\operatorname{minimize} & f_{0}(x) \\
\text { subject to } & f_{i}(x) \leq 0, \quad i=1, \ldots, m \\
& A x=b
\end{array}
$$

important property: feasible set of a convex optimization problem is convex

Lagrangian

standard form problem (not necessarily convex)

$$
\begin{array}{ll}
\operatorname{minimize} & f_{0}(x) \\
\text { subject to } & f_{i}(x) \leq 0, \quad i=1, \ldots, m \\
& h_{i}(x)=0, \quad i=1, \ldots, p
\end{array}
$$

variable $x \in \mathbf{R}^{n}$, domain \mathcal{D}, optimal value p^{\star}
Lagrangian: $L: \mathbf{R}^{n} \times \mathbf{R}^{m} \times \mathbf{R}^{p} \rightarrow \mathbf{R}$, with $\operatorname{dom} L=\mathcal{D} \times \mathbf{R}^{m} \times \mathbf{R}^{p}$,

$$
L(x, \lambda, \nu)=f_{0}(x)+\sum_{i=1}^{m} \lambda_{i} f_{i}(x)+\sum_{i=1}^{p} \nu_{i} h_{i}(x)
$$

- weighted sum of objective and constraint functions
- λ_{i} is Lagrange multiplier associated with $f_{i}(x) \leq 0$
- ν_{i} is Lagrange multiplier associated with $h_{i}(x)=0$

Lagrange dual function

Lagrange dual function: $g: \mathbf{R}^{m} \times \mathbf{R}^{p} \rightarrow \mathbf{R}$,

$$
\begin{aligned}
g(\lambda, \nu) & =\inf _{x \in \mathcal{D}} L(x, \lambda, \nu) \\
& =\inf _{x \in \mathcal{D}}\left(f_{0}(x)+\sum_{i=1}^{m} \lambda_{i} f_{i}(x)+\sum_{i=1}^{p} \nu_{i} h_{i}(x)\right)
\end{aligned}
$$

g is concave, can be $-\infty$ for some λ, ν
lower bound property: if $\lambda \succeq 0$, then $g(\lambda, \nu) \leq p^{\star}$
proof: if \tilde{x} is feasible and $\lambda \succeq 0$, then

$$
f_{0}(\tilde{x}) \geq L(\tilde{x}, \lambda, \nu) \geq \inf _{x \in \mathcal{D}} L(x, \lambda, \nu)=g(\lambda, \nu)
$$

minimizing over all feasible \tilde{x} gives $p^{\star} \geq g(\lambda, \nu)$

Karush-Kuhn-Tucker (KKT) conditions

the following four conditions are called KKT conditions (for a problem with differentiable f_{i}, h_{i}):

1. primal constraints: $f_{i}(x) \leq 0, i=1, \ldots, m, h_{i}(x)=0, i=1, \ldots, p$
2. dual constraints: $\lambda \succeq 0$
3. complementary slackness: $\lambda_{i} f_{i}(x)=0, i=1, \ldots, m$
4. gradient of Lagrangian with respect to x vanishes:

$$
\nabla f_{0}(x)+\sum_{i=1}^{m} \lambda_{i} \nabla f_{i}(x)+\sum_{i=1}^{p} \nu_{i} \nabla h_{i}(x)=0
$$

