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Today’s Objectives

* Review of convex optimization

Disclaimer: Material used:

* Convex Optimization —S. Boyd and L. Vandenberghe
http://web.stanford.edu/~boyd/cvxbook/

e Matrix Calculus - Po-Chen Wu
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Matrix calculus

V1 0y
L Y2 L d0x
* The derivative of y = | "." |, by x is written as: P
| ay 22
| Ym._ & — a:x
0Ym
X1 0x
X
* The derivative of y by x = 52 is written as:
xTL
] dy _|dy Oy dy
ox |0x; 0xy d0x,,
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Matrix calculus

Y1 X1
.. Y2 . X2
* The derivative ofy = | °." | with respecttox = | .
VY. | Xn ]
0y, 0y 0y1
axl ﬁxz 8xn
dy dy, 0y 0y
— < dxy 0x, 0x
0xX . _ n
0Ym O0Ym 0Ym
dx1 O0xy 0xy,
e Also known as the Jacobian matrix
Spring Semester 2019 Universitcjjf7é)rzt?:(s:t;iLiitgerlaslc})igr)wfzislgigsartment ‘ EQ:BM-CIZL_!I:EI' Seionce




Example

X1
* Giveny = B,I;], X = [Xz], and y; = x¥ — 2x,, Y, = x5 — 4x,,
X3

) . 0dy.
the Jacobian matrix a—i is:

dy, 0y: 0y1
dy |0x; Ox, Ox3 2x1 —2 0
&— ayz Oyz ayz 0 —4 2X3
dxi 0x, 0x3]
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* The derivative of a matrix function Y by a scalar x is known
as the tangent matrix and is given by
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* The derivative of a scalar y function by a matrix X is known
as the gradient matrix and is given by

dy 0y dy -
0X11 0Xp1  0Xpy
dy 0Oy dy

oX — [9X12 90Xz 0Xinz
oy dy oy
X, 0X,. X,
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List of Differentiation

Scalar y Vectory (size m) Matrix Y (size m X n)
Notnatlo Type Notation Type Notation Type
size-m
Y
Scalar x O_y scalar Q column 0_ Tr:aic(ri?;t

0x 0x vector 0x

Vector x dy size-n ady mxn Y B
(size n) ox row vector Ix matrix ox

Matrix X dy qXxXp oy B oY B
(sizep X q)  JX matrix X X
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Derivative Formulas

xTA AT
xTx 2xT
xT Ax x'A + xTAT

Hint: Derive X
* If you have to differentiate X!, transpose the rest.

* If you have two X-terms, differentiate them separately in
turn and then sum up the two derivatives.
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Chain rule

X1 V1] (Z1
I Y I BY |42 . : .
eletx=]|.|,y=|".|,andz =] .|, where Z is a function of y, which
o | Xn - Lm] | Zr |
is in turn a function of X. Then
'521 021 021'

Ox; Oxy; E
0z dz, 0z, 0z,

def

Ix d0x4 | 0x, ay'cn ’

9z, 0z, dz,

| 0x4 69% dx,,
where aZi B aZL' ayk 1=1,2,-,r
0x; kzlayk dx; (J=1L12,n
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Chain rule

" 0Z1 0Yg
0y 0x4
0z5 0Yk

093'— 0y 0x

P Yk 1.

Z 0z, 0y

|7 0y 0xy
‘621 621
0y, 0y;
622 622
=|0y:1 0y
0z, 02zZy
dy, 0y

921 0k

0y 0Xx5

0z, 0y

0yk 0x3

0Zy 0y

0y 0x2
0z, 11 9y1  9y1
Oym |l 0x1 0Jx,
0z, dy, 0y,
Ovym |l 0x; Jx,
azr aYm aYm
aym_ _axl axz

0z1 Yk
Yk 9xn
0z, 0y
Yk 9xn

02y 0Yk
0y 0xp

2.

0y1

0Xn

Ay>
dxn

0Ym

0Xp, -

_ 920y
9y ox
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The Matrix Differential

* For a scalar function f(x), where X is an n-vector, the
ordinary differential of multivariate calculus is defined as

df = Z 7

* In harmony with this formula, we define the differential of
anm X n matrix X = [X;;] to be

i Xml dX12 . Xmn-
dX def dXZl : dX22 . d){Zn
_del deZ den-
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The Matrix Differential

* This definition complies with the multiplicative and
associative rules

d(aX) = adX diX+Y)=dX+dY

 If Xand Y are product-conforming matrices, it can be
verified that the differential of their product is

d(XY) = (dX)Y + X(dY)

Spring Semester 2019
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Hessian matrix

* Let f: R™ = R and assume all second partial derivative exist in the
domain

e The Hessian matrix H € R™*" is defined as

O r*r . _F
Oy Ox1 0xo Oxq1 0z,
O°f 0 R |
H — 0o 011 893% 0xo 01,
O f rr ... J
| Ox, 0x1 Ox, 0z oxr? |
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Mathematical optimization

(mathematical) optimization problem

minimize  fo(2)
subject to  fi(x) < b;, 1=1,...,m

e v = (r1,...,Tn): optimization variables
e fo: R" — R: objective function
e fi:R">R, i=1,..., m: constraint functions

solution or optimal point x* has smallest value of f; among all vectors
that satisfy the constraints

. CS-570 Statistical Signal Processing
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Solving optimization problems

general optimization problem

e very difficult to solve

e methods involve some compromise, e.qg., very long computation time, or
not always finding the solution (which may not matter in practice)

exceptions: certain problem classes can be solved efficiently and reliably

e least-squares problems
e linear programming problems

e convex optimization problems
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Least squares

minimize ||Az — b||3

solving least-squares problems

e analytical solution: z* = (AT A)~1ATH

e reliable and efficient algorithms and software

e computation time proportional to n?k (A € ka"); less if structured

e a mature technology

using least-squares

e least-squares problems are easy to recognize

e a few standard techniques increase flexibility (e.g., including weights,
adding regularization terms)
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Linear programming

minimize ¢l x

subject to a?:r <bj, i1=1,....m
solving linear programs

e no analytical formula for solution
e reliable and efficient algorithms and software
e computation time proportional to n?m if m > n; less with structure

e a mature technology

using linear programming
e not as easy to recognize as least-squares problems

e a few standard tricks used to convert problems into linear programs
(e.g., problems involving ¢1- or {-norms, piecewise-linear functions)
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Convex optimization problems

minimize  fo(x)
subject to  fi(z) <b;, 1=1,....m

e objective and constraint functions are convex:
filax + By) < afi(z) + Bfi(y)
fa+3=1a>0 >0

e includes least-squares problems and linear programs as special cases
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Nonlinear optimization

traditional techniques for general nonconvex problems involve compromises

local optimization methods (nonlinear programming)

e find a point that minimizes fp among feasible points near it
e fast, can handle large problems

e require initial guess

e provide no information about distance to (global) optimum

global optimization methods

e find the (global) solution

e worst-case complexity grows exponentially with problem size

these algorithms are often based on solving convex subproblems
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History of convex optimization

theory (convex analysis): 1900-1970

algorithms
e 1947: simplex algorithm for linear programming (Dantzig)
e 1970s: ellipsoid method and other subgradient methods

e 1980s & 90s: polynomial-time interior-point methods for convex
optimization (Karmarkar 1984, Nesterov & Nemirovski 1994)

e since 2000s: many methods for large-scale convex optimization

applications
e before 1990: mostly in operations research, a few in engineering

e since 1990: many applications in engineering (control, signal processing,
communications, circuit design, . . . )

e since 2000s: machine learning and statistics
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Affine set

line through x1, x9: all points

r=0xr1+(1—0)x ( € R)

affine set: contains the line through any two distinct points in the set

example: solution set of linear equations {x | Az = b}

(conversely, every affine set can be expressed as solution set of system of
linear equations)

CS-570 Statistical Signal Processing "FORTH 5
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Convex sets

Definition
A set C C R" is convex if for x,y € C and any a € [0, 1],

ar+ (1 —a)y e C.

CS-570 Statistical Signal Processing
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Examp

les

» All of R" (obvious)

» Non-negative orthant, R : let x = 0, y = 0, clearly

ar + (1

—a)y > 0.

» Norm balls: let ||z|| <1, |

| +

(1 - )y < [lax]

y|| <1, then

NGE

Sy
W
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Examples
» Affine subspaces: Ax = b, Ay = b, then
ar+ (1 —a)y) =adAxr+ (1 —a)Ay=ab+ (1 — a)b =

CS-570 Statistical Signal Processing
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Polyhedra

solution set of finitely many linear inequalities and equalities

Ax <b, Cr=d

(A € R™*"™ C € RP™™, < is componentwise inequality)
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Convex combination and convex hull

convex combination of z1,. . ., xx: any point x of the form
& = 0121 + Oxg + - - - + Opy

withfy +---+60=1,6,>0

convex hull conv S: set of all convex combinations of points in S

‘I._
)." ™ > — ___I' :-._'_'__ e
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. f i
[
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Examples

» Arbitrary intersections of convex sets: let C; be convex for 7 € Z,
C = (), Ci, then

reCyelC = ar+(l—-a)yeC;Viel
soar+ (1 —a)y € C.
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Convex functions

A function f : R™ — R is convex if for z,y € dom f and any a € [0, 1],

flaz+ (1 —a)y) < af(z) + (1 —a)f(y).

Spring Semester 2019
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Examples on R" and R™"

affine functions are convex and concave; all norms are convex

examples on R"
e affine function f(z) =a’z + b

e norms: ||z||p = (31 |2i|P)Y/P for p > 1; ||2||ec = maxy |2k

examples on R™™™ (m x n matrices)

e affine function

m

f(X)=tr(ATX)+b= ZZAwXU +bh =<AX>+b

i=1 j=1

e spectral (maximum singular value) norm
FX) = 1X |2 = omax(X) = (Amax(X T X))'/?

Spring Semester 2019 . .
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Examples

Sets:
convex not convex

and functions:

concave neither
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First order convexity conditions

Theorem
Suppose f : R™ — R is differentiable. Then f is convex if and only if for
all z,y € dom f

fly) > f(2) + Vi) (y —2)

f(@) +Vf@)(y - )

Spring Semester 2019
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First order convexity conditions

Definition
The subgradient set, or subdifferential set, 0f(x) of f at = is

Of(x)={g: f(y) > f(z) +g" (y—x) forally}.

Theorem

f:R™ — R is convex if and
only if it has non-empty
subdifferential set everywhere.

CS-570 Statistical Signal Processing
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Second order convexity conditions

If f(x) is twice continuously differentiable, then

fisconvex < V2f(xz) >0 forall 2z € R™.
2nd-order conditions: for twice differentiable f with convex domain

e f is convex if and only if

V2f(x) >0 forall z € dom f

o if V2f(x) > 0 for all z € dom f, then f is strictly convex

Spring Semester 2019
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Examples

Non-convex Non-differentiable convex
1 — ||| |||
cos(eT;r) |||
cT Az, A #0 max{||z||?, Tz}
(el EdlH

CS-570 Statistical Signal Processing
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— log det (X))
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Properties of Convex functions

e Convexity over all lines:
f(x) isconvex << f(xg—+ th) is convex in t for all zg and h

e Positive multiple:

f(x)is convex <<  af(x) is convex, for all « > 0
e Sum of convex functions:

fi(xz), fo(x) convex = fi(x) + f2(x) is convex
e Pointwise maximum:

fi(x), fa(x) convex =  max{fi(x), f2(x)} is convex

e Affine transformation of domain:

f(x)isconvex = f(Axz + b) is convex
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Some Commonly Used Convex Functions

e Piecewise-linear functions: maxz-{a;r;r + b;} is convex in x
e Quadratic functions: f(z) = T Qx4 2qT x + c is convex iff Q > 0

e Piecewise-quadratic functions: max;{z’ Q;z+q =+ ¢;} is convex in z if Q; > 0

n 1/k
e Norm functions: ||z||r = (Z |;1:@-]k) , Where k& € [1, o)

1=1

e Convex functions over matrices: Tr(X ), Amax(X) are convex on X = X 7T

and — log det(X) is convex on the set {X | X = X7, X > 0}

e Logarithmic barrier functions: f(x) = Z log(b; — a?;r)_l is convex over
i=1

P={x| a?;r < b, 1 <i<m}
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Convex Optimization Problems

minimize  fo(x)
subject to  fi(z) <0, i1=1,....m
hi(x) =0, 1
e 1 € R" is the optimization variable
e fo: R"™ — R is the objective or cost function
e fi:R" =R, i=1,....m, are the inequality constraint functions

e h; : R" — R are the equality constraint functions

optimal value:

p*=inf{fo(x) | fi(z) <0, i=1,....m, hy(z) =0, i =1,...,p}

e p* = ¢ if problem is infeasible (no x satisfies the constraints)

e p* = —oo if problem is unbounded below

CS-570 Statistical Signal Processing
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0000000000

Infimum

A set T of real numbers (red and green circles), a
subset S of T (green circles), and the infimum of S.

Note that for finite, totally ordered sets the infimum and
the minimum are equal.

Spring Semester 2019 CS-570 Statistical Signal Processing

University of Crete, Computer Science Department 2A0S FORTH
N Vrat Institute of Computer Science



https://en.wikipedia.org/wiki/Minimum

Optimal and locally optimal points

x is feasible if x € dom fp and it satisfies the constraints
a feasible = is optimal if fo(x) = p*; Xopt Is the set of optimal points

x is locally optimal if there is an R > 0 such that x is optimal for

minimize (over z) fo(2)

subject to fi(2) <0, i=1,..., m, hi(z)=0, i=1,....p
2 —all < R

examples (withn =1, m = p = 0)

e fo(r) =1/x, dom fy = Ry, : p* =0, no optimal point

o fo(r)=—logx, dom fo=Ri;i: p*=—0

o folr)==1 logz dom fo = R4y: p* = —1/e, x = 1/e is optimal

e fo(z)=2"— 3z, p* = —00, local optimum at z =1
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Feasibility problem

find x

can be considered a special case of the general problem with fo(z) =0

minimize 0
subject to fi(x) <0, 1
hi(x) =0, i

e p* = 0 if constraints are feasible; any feasible x is optimal

e p* = oo if constraints are infeasible

-57 istical Signal P i
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Convex optimization problem

standard form convex optimization problem

minimize  fo(x)
subject to f,,( ) <0, i=1,....m
a. :bz. 1=1,...,p
e fo, f1, ..., fm are convex; equality constraints are affine
e problem is quasiconvex if fy is quasiconvex (and fi, ..., fm, convex)

often written as

minimize  fo(x)
subject to  fi(x) <0, 1=1,..., m
Axr =0

important property: feasible set of a convex optimization problem is convex

CS-570 Statistical Signal Processing
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Lagrangian

standard form problem (not necessarily convex)

minimize  fo(x)
subject to fz(l) § , i=1
) =0, i

variable € R™, domain D, optimal value p

Lagrangian: L : R" x R" x R? = R, with dom L =D x R™ x R?

P
L(x, A\, v) Z)\ fi(x —I—Zijih-i(”l)
i=1

e weighted sum of objective and constraint functions

e )\; is Lagrange multiplier associated with f;(z) <0

e I is Lagrangemultlpller associated with h;(x) =0

Spring Semester 2019
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Lagrange dual function

Lagrange dual function: ¢ : R x R” — R,

g\ v)

inf L(x.\,v)
xED

m P
= inf ( folz) + ; \ifi(z) + ; V,-izl-(f))

g is concave, can be —oo for some A, v
lower bound property: if A > 0, then g(\,v) < p*

proof: if T is feasible and A > 0, then

fo(z) > L(x,\,v) > -i]él%L(;r’ A\ v)=g(\v)

minimizing over all feasible = gives p* > g(\, 1)
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Karush-Kuhn-Tucker (KKT) conditions

the following four conditions are called KKT conditions (for a problem with
differentiable f;, h;):

primal constraints: f;(z) <0,i=1,...,m, hy(z)=0,i=1,...,p
dual constraints: A > 0

complementary slackness: A;fi;(z) =0,i=1,....m

I A\

gradient of Lagrangian with respect to & vanishes:

V fol(x +Z)\ V fi(x +Zu1v11
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