

CS-570 Statistical Signal Processing

Lecture 3: Review of Convex Optimization

Spring Semester 2019

Grigorios Tsagkatakis

Today's Objectives

Review of convex optimization

Disclaimer: Material used:

- Convex Optimization S. Boyd and L. Vandenberghe <u>http://web.stanford.edu/~boyd/cvxbook/</u>
- Matrix Calculus Po-Chen Wu

Spring Semester 2019

Matrix calculus

• The derivative of
$$\mathbf{y} = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_m \end{bmatrix}$$
, by x is written as:

$$\frac{\partial \mathbf{y}}{\partial \mathbf{x}} \stackrel{\text{def}}{=} \begin{bmatrix} \frac{\partial y_1}{\partial x} \\ \frac{\partial y_2}{\partial x} \\ \vdots \\ \frac{\partial y_m}{\partial x} \end{bmatrix}$$
• The derivative of \mathbf{y} by $\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}$ is written as:

$$\frac{\partial \mathbf{y}}{\partial \mathbf{x}} \stackrel{\text{def}}{=} \begin{bmatrix} \frac{\partial y}{\partial x_1} & \frac{\partial y}{\partial x_2} & \cdots & \frac{\partial y}{\partial x_n} \end{bmatrix}$$

3

Matrix calculus

• The derivative of
$$\mathbf{y} = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_m \end{bmatrix}$$
 with respect to $\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}$:
$$\frac{\partial \mathbf{y}}{\partial \mathbf{x}} \stackrel{\text{def}}{=} \begin{bmatrix} \frac{\partial y_1}{\partial x_1} & \frac{\partial y_1}{\partial x_2} & \dots & \frac{\partial y_1}{\partial x_n} \\ \frac{\partial y_2}{\partial x_1} & \frac{\partial y_2}{\partial x_2} & \dots & \frac{\partial y_2}{\partial x_n} \\ \vdots & \ddots & \vdots \\ \frac{\partial y_m}{\partial x_1} & \frac{\partial y_m}{\partial x_2} & \dots & \frac{\partial y_m}{\partial x_n} \end{bmatrix}$$

• Also known as the Jacobian matrix

Spring Semester 2019

Example

• Given
$$\mathbf{y} = \begin{bmatrix} y_1 \\ y_2 \end{bmatrix}$$
, $\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$, and $y_1 = x_1^2 - 2x_2$, $y_2 = x_3^2 - 4x_2$,
the Jacobian matrix $\frac{\partial \mathbf{y}}{\partial \mathbf{x}}$ is:

$$\frac{\partial \mathbf{y}}{\partial \mathbf{x}} = \begin{bmatrix} \frac{\partial y_1}{\partial x_1} & \frac{\partial y_1}{\partial x_2} & \frac{\partial y_1}{\partial x_3} \\ \frac{\partial y_2}{\partial x_1} & \frac{\partial y_2}{\partial x_2} & \frac{\partial y_2}{\partial x_3} \end{bmatrix} = \begin{bmatrix} 2x_1 & -2 & 0 \\ 0 & -4 & 2x_3 \end{bmatrix}$$

• The derivative of a matrix function **Y** by a scalar *x* is known as the tangent matrix and is given by

$$\frac{\partial \mathbf{Y}}{\partial x} \stackrel{\text{def}}{=} \begin{bmatrix} \frac{\partial Y_{11}}{\partial x} & \frac{\partial Y_{12}}{\partial x} & \dots & \frac{\partial Y_{1n}}{\partial x} \\ \frac{\partial Y_{21}}{\partial x} & \frac{\partial Y_{22}}{\partial x} & \dots & \frac{\partial Y_{2n}}{\partial x} \\ \vdots & \ddots & \vdots \\ \frac{\partial Y_{m1}}{\partial x} & \frac{\partial Y_{m2}}{\partial x} & \dots & \frac{\partial Y_{mn}}{\partial x} \end{bmatrix}$$

• The derivative of a scalar y function by a matrix X is known as the gradient matrix and is given by

$$\frac{\partial y}{\partial \mathbf{X}} \stackrel{\text{def}}{=} \begin{bmatrix} \frac{\partial y}{\partial X_{11}} & \frac{\partial y}{\partial X_{21}} & \dots & \frac{\partial y}{\partial X_{m1}} \\ \frac{\partial y}{\partial X_{12}} & \frac{\partial y}{\partial X_{22}} & \dots & \frac{\partial y}{\partial X_{m2}} \\ \vdots & \ddots & \vdots \\ \frac{\partial y}{\partial X_{1n}} & \frac{\partial y}{\partial X_{2n}} & \dots & \frac{\partial y}{\partial X_{mn}} \end{bmatrix}$$

List of Differentiation

	Scalar y		Vector \mathbf{y} (size m)		Matrix Y (size $m \times n$)	
	Notatio n	Туре	Notation	Туре	Notation	Туре
Scalar <i>x</i>	$\frac{\partial y}{\partial x}$	scalar	$\frac{\partial \mathbf{y}}{\partial x}$	size- <i>m</i> column vector	$\frac{\partial \mathbf{Y}}{\partial x}$	m imes n matrix
Vector x (size <i>n</i>)	$\frac{\partial y}{\partial \mathbf{x}}$	size- <i>n</i> row vector	$rac{\partial \mathbf{y}}{\partial \mathbf{x}}$	m imes nmatrix	$\frac{\partial \mathbf{Y}}{\partial \mathbf{x}}$	—
Matrix X (size $p \times q$)	$\frac{\partial y}{\partial \mathbf{X}}$	q imes p matrix	$rac{\partial \mathbf{y}}{\partial \mathbf{X}}$	—	$\frac{\partial \mathbf{Y}}{\partial \mathbf{X}}$	—

Derivative Formulas

Hint: Derive \mathbf{x}

- If you have to differentiate \mathbf{x}^T , transpose the rest.
- If you have two **x**-terms, differentiate them separately in turn and then sum up the two derivatives.

Chain rule

• Let
$$\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}$$
, $\mathbf{y} = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_m \end{bmatrix}$, and $\mathbf{z} = \begin{bmatrix} z_1 \\ z_2 \\ \vdots \\ z_r \end{bmatrix}$, where \mathbf{z} is a function of \mathbf{y} , which is in turn a function of \mathbf{x} . Then

$$\frac{\partial \mathbf{z}}{\partial \mathbf{x}} \stackrel{\text{def}}{=} \begin{bmatrix} \frac{\partial z_1}{\partial x_1} & \frac{\partial z_1}{\partial x_2} & \dots & \frac{\partial z_1}{\partial x_n} \\ \frac{\partial z_2}{\partial x_1} & \frac{\partial z_2}{\partial x_2} & \dots & \frac{\partial z_2}{\partial x_n} \\ \vdots & \ddots & \vdots \\ \frac{\partial z_r}{\partial x_1} & \frac{\partial z_r}{\partial x_2} & \dots & \frac{\partial z_r}{\partial x_n} \end{bmatrix},$$

where $\frac{\partial z_i}{\partial x_j} = \sum_{k=1}^m \frac{\partial z_i}{\partial y_k} \frac{\partial y_k}{\partial x_j} \begin{cases} i = 1, 2, \dots, r \\ j = 1, 2, \dots, n \end{cases}$

Chain rule						
• $\frac{\partial \mathbf{z}}{\partial \mathbf{x}} =$	$\begin{bmatrix} \sum \frac{\partial z_1}{\partial y_k} \frac{\partial y_k}{\partial x_1} \\ \sum \frac{\partial z_2}{\partial y_k} \frac{\partial y_k}{\partial x_1} \\ \sum \frac{\partial z_r}{\partial y_k} \frac{\partial y_k}{\partial x_1} \end{bmatrix}$	$\sum \frac{\partial z_1}{\partial y_k} \frac{\partial y_k}{\partial x_2}$ $\sum \frac{\partial z_2}{\partial y_k} \frac{\partial y_k}{\partial x_2}$ \vdots $\sum \frac{\partial z_r}{\partial y_k} \frac{\partial y_k}{\partial x_2}$	•••	$\sum \frac{\partial z_1}{\partial y_k}$ $\sum \frac{\partial z_2}{\partial y_k}$ \vdots $\sum \frac{\partial z_r}{\partial y_k}$	$\frac{\partial y_k}{\partial x_n}$ $\frac{\partial y_k}{\partial x_n}$ $\frac{\partial y_k}{\partial x_n}$	
$= \begin{bmatrix} \frac{\partial z_1}{\partial y_1} \\ \frac{\partial z_2}{\partial y_1} \\ \frac{\partial z_r}{\partial y_1} \end{bmatrix}$	$ \frac{\partial z_1}{\partial y_2} \dots \\ \frac{\partial z_2}{\partial y_2} \dots \\ \vdots \dots \\ \frac{\partial z_r}{\partial y_2} \dots $	$ \frac{\partial z_1}{\partial y_m} \begin{bmatrix} \frac{\partial y_1}{\partial x_1} \\ \frac{\partial z_2}{\partial y_m} \\ \vdots \\ \frac{\partial z_r}{\partial y_m} \end{bmatrix} \begin{bmatrix} \frac{\partial y_1}{\partial x_1} \\ \frac{\partial y_2}{\partial x_1} \\ \frac{\partial y_m}{\partial x_1} \end{bmatrix} $	$\frac{\frac{\partial y_1}{\partial x_2}}{\frac{\partial y_2}{\partial x_2}}$ $\vdots \frac{\frac{\partial y_m}{\partial x_2}}{\frac{\partial y_m}{\partial x_2}}$	•••	$\frac{\partial y_1}{\partial x_n}$ $\frac{\partial y_2}{\partial x_n}$ \vdots $\frac{\partial y_m}{\partial x_n}$	$= \frac{\partial \mathbf{z}}{\partial \mathbf{y}} \frac{\partial \mathbf{y}}{\partial \mathbf{x}}$

The Matrix Differential

• For a scalar function $f(\mathbf{x})$, where \mathbf{x} is an *n*-vector, the ordinary differential of multivariate calculus is defined as

$$df = \sum_{i=1}^{n} \frac{\partial f}{\partial x_i} dx_i$$

• In harmony with this formula, we define the differential of an $m \times n$ matrix $\mathbf{X} = [X_{ij}]$ to be

$$d\mathbf{X} \stackrel{\text{def}}{=} \begin{bmatrix} dX_{11} & dX_{12} & \dots & dX_{1n} \\ dX_{21} & dX_{22} & \dots & dX_{2n} \\ \vdots & \ddots & \vdots \\ dX_{m1} & dX_{m2} & \dots & dX_{mn} \end{bmatrix}$$

The Matrix Differential

• This definition complies with the multiplicative and associative rules

 $d(\alpha \mathbf{X}) = \alpha d\mathbf{X}$ $d(\mathbf{X} + \mathbf{Y}) = d\mathbf{X} + d\mathbf{Y}$

 If X and Y are product-conforming matrices, it can be verified that the differential of their product is

$$d(\mathbf{X}\mathbf{Y}) = (d\mathbf{X})\mathbf{Y} + \mathbf{X}(d\mathbf{Y})$$

Hessian matrix

- Let $f: \mathbb{R}^n \to \mathbb{R}$ and assume all second partial derivative exist in the domain
- The Hessian matrix $\mathbf{H} \in \mathbb{R}^{n \times n}$ is defined as

$$\mathbf{H} = \begin{bmatrix} \frac{\partial^2 f}{\partial x_1^2} & \frac{\partial^2 f}{\partial x_1 \partial x_2} & \cdots & \frac{\partial^2 f}{\partial x_1 \partial x_n} \\ \frac{\partial^2 f}{\partial x_2 \partial x_1} & \frac{\partial^2 f}{\partial x_2^2} & \cdots & \frac{\partial^2 f}{\partial x_2 \partial x_n} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial^2 f}{\partial x_n \partial x_1} & \frac{\partial^2 f}{\partial x_n \partial x_2} & \cdots & \frac{\partial^2 f}{\partial x_n^2} \end{bmatrix}$$

Mathematical optimization

(mathematical) optimization problem

minimize
$$f_0(x)$$

subject to $f_i(x) \le b_i$, $i = 1, \dots, m$

- $x = (x_1, \ldots, x_n)$: optimization variables
- $f_0: \mathbf{R}^n \to \mathbf{R}$: objective function
- $f_i: \mathbf{R}^n \to \mathbf{R}, i = 1, \dots, m$: constraint functions

solution or **optimal point** x^* has smallest value of f_0 among all vectors that satisfy the constraints

Solving optimization problems

general optimization problem

- very difficult to solve
- methods involve some compromise, *e.g.*, very long computation time, or not always finding the solution (which may not matter in practice)

exceptions: certain problem classes can be solved efficiently and reliably

- least-squares problems
- linear programming problems
- convex optimization problems

Least squares

minimize $||Ax - b||_2^2$

solving least-squares problems

- \bullet analytical solution: $x^{\star} = (A^T A)^{-1} A^T b$
- reliable and efficient algorithms and software
- computation time proportional to n^{2k} ($A \in \mathbf{R}^{k \times n}$); less if structured
- a mature technology

using least-squares

Spring Semester 2019

- least-squares problems are easy to recognize
- a few standard techniques increase flexibility (*e.g.*, including weights, adding regularization terms)

Linear programming

$$\begin{array}{ll} \mbox{minimize} & c^T x \\ \mbox{subject to} & a_i^T x \leq b_i, \quad i=1,\ldots,m \end{array}$$

solving linear programs

- no analytical formula for solution
- reliable and efficient algorithms and software
- computation time proportional to n^2m if $m \ge n$; less with structure
- a mature technology

using linear programming

- not as easy to recognize as least-squares problems
- a few standard tricks used to convert problems into linear programs (*e.g.*, problems involving ℓ_1 or ℓ_∞ -norms, piecewise-linear functions)

Convex optimization problems

$$\begin{array}{ll} \mbox{minimize} & f_0(x) \\ \mbox{subject to} & f_i(x) \leq b_i, \quad i=1,\ldots,m \end{array}$$

• objective and constraint functions are convex:

$$f_i(\alpha x + \beta y) \le \alpha f_i(x) + \beta f_i(y)$$

if $\alpha + \beta = 1$, $\alpha \ge 0$, $\beta \ge 0$

• includes least-squares problems and linear programs as special cases

Nonlinear optimization

traditional techniques for general nonconvex problems involve compromises

local optimization methods (nonlinear programming)

- find a point that minimizes f_0 among feasible points near it
- fast, can handle large problems
- require initial guess
- provide no information about distance to (global) optimum

global optimization methods

- find the (global) solution
- worst-case complexity grows exponentially with problem size

these algorithms are often based on solving convex subproblems

History of convex optimization

theory (convex analysis): 1900–1970

algorithms

- 1947: simplex algorithm for linear programming (Dantzig)
- 1970s: ellipsoid method and other subgradient methods
- 1980s & 90s: polynomial-time interior-point methods for convex optimization (Karmarkar 1984, Nesterov & Nemirovski 1994)
- since 2000s: many methods for large-scale convex optimization

applications

- before 1990: mostly in operations research, a few in engineering
- since 1990: many applications in engineering (control, signal processing, communications, circuit design, . . .)
- since 2000s: machine learning and statistics

Affine set

line through x_1 , x_2 : all points

affine set: contains the line through any two distinct points in the set

example: solution set of linear equations $\{x \mid Ax = b\}$

(conversely, every affine set can be expressed as solution set of system of linear equations)

Convex sets

Definition A set $C \subseteq \mathbb{R}^n$ is *convex* if for $x, y \in C$ and any $\alpha \in [0, 1]$,

 $\alpha x + (1 - \alpha)y \in C.$

23

Examples

- All of \mathbb{R}^n (obvious)
- Non-negative orthant, \mathbb{R}^n_+ : let $x \succeq 0$, $y \succeq 0$, clearly $\alpha x + (1 \alpha)y \succeq 0$.
- ▶ Norm balls: let $||x|| \le 1$, $||y|| \le 1$, then

 $\|\alpha x + (1 - \alpha)y\| \le \|\alpha x\| + \|(1 - \alpha)y\| = \alpha \|x\| + (1 - \alpha) \|y\| \le 1.$

Examples

▶ Affine subspaces: Ax = b, Ay = b, then

 $A(\alpha x + (1 - \alpha)y) = \alpha Ax + (1 - \alpha)Ay = \alpha b + (1 - \alpha)b = b.$

Spring Semester 2019

Polyhedra

solution set of finitely many linear inequalities and equalities

$$Ax \leq b, \qquad Cx = d$$

 $(A \in \mathbf{R}^{m \times n}, C \in \mathbf{R}^{p \times n}, \preceq \text{ is componentwise inequality})$

polyhedron is intersection of finite number of halfspaces and hyperplanes

Convex combination and convex hull

convex combination of x_1, \ldots, x_k : any point x of the form

$$x = \theta_1 x_1 + \theta_2 x_2 + \dots + \theta_k x_k$$

with $\theta_1 + \cdots + \theta_k = 1$, $\theta_i \ge 0$

convex hull conv S: set of all convex combinations of points in S

Examples

• Arbitrary intersections of convex sets: let C_i be convex for $i \in \mathcal{I}$, $C = \bigcap_i C_i$, then

 $x \in C, y \in C \quad \Rightarrow \quad \alpha x + (1 - \alpha)y \in C_i \ \forall \ i \in \mathcal{I}$

so $\alpha x + (1 - \alpha)y \in C$.

Convex functions

A function $f : \mathbb{R}^n \to \mathbb{R}$ is *convex* if for $x, y \in \text{dom } f$ and any $\alpha \in [0, 1]$,

$$f(\alpha x + (1 - \alpha)y) \le \alpha f(x) + (1 - \alpha)f(y).$$

Examples on \mathbb{R}^n and $\mathbb{R}^{m \times n}$

affine functions are convex and concave; all norms are convex

examples on R^n

- affine function $f(x) = a^T x + b$
- norms: $||x||_p = (\sum_{i=1}^n |x_i|^p)^{1/p}$ for $p \ge 1$; $||x||_{\infty} = \max_k |x_k|$

examples on $\mathbb{R}^{m \times n}$ ($m \times n$ matrices)

• affine function

$$f(X) = \mathbf{tr}(A^T X) + b = \sum_{i=1}^{m} \sum_{j=1}^{n} A_{ij} X_{ij} + b = \langle A, X \rangle + b$$

• spectral (maximum singular value) norm

$$f(X) = \|X\|_2 = \sigma_{\max}(X) = (\lambda_{\max}(X^T X))^{1/2}$$

Examples

Sets:

First order convexity conditions

Theorem Suppose $f : \mathbb{R}^n \to \mathbb{R}$ is differentiable. Then f is convex if and only if for all $x, y \in \text{dom } f$ $f(y) \ge f(x) + \nabla f(x)^T (y - x)$

First order convexity conditions

Definition

The subgradient set, or subdifferential set, $\partial f(x)$ of f at x is

$$\partial f(x) = \left\{ g : f(y) \ge f(x) + g^T(y - x) \text{ for all } y \right\}.$$

Theorem

Spring Semester 2019

 $f : \mathbb{R}^n \to \mathbb{R}$ is convex if and only if it has non-empty subdifferential set everywhere.

Second order convexity conditions

If f(x) is twice continuously differentiable, then

 $f ext{ is convex } \Leftrightarrow \nabla^2 f(x) \ge 0 ext{ for all } x \in \Re^n.$

2nd-order conditions: for twice differentiable f with convex domain

• f is convex if and only if

 $\nabla^2 f(x) \succeq 0$ for all $x \in \operatorname{\mathbf{dom}} f$

• if $\nabla^2 f(x) \succ 0$ for all $x \in \operatorname{\mathbf{dom}} f$, then f is strictly convex

Examples

Non-convex	Non-differentiable convex	Differentiable convex
$1 - \ x\ $	$\ x\ $	$x^T A x, \ A \ge 0$
$\cos(e^T x)$	$\ x\ _1$	$e^{-\ x\ ^2}$
$x^T A x, \ A \ge 0$	$\max\{\ x\ ^2, e^T x\}$	$-\log(t^2 - x ^2)$
$\ x\ ^3$	$ x _{1}^{2}$	$-\log \det(X)$
:	:	:

Spring Semester 2019

Properties of Convex functions

• Convexity over all lines:

f(x) is convex \Leftrightarrow $f(x_0 + th)$ is convex in t for all x_0 and h

• Positive multiple:

f(x) is convex $\Leftrightarrow \alpha f(x)$ is convex, for all $\alpha \geq 0$

• Sum of convex functions:

$$f_1(x), f_2(x) \text{ convex} \quad \Rightarrow \quad f_1(x) + f_2(x) \text{ is convex}$$

• Pointwise maximum:

 $f_1(x), f_2(x) \text{ convex} \quad \Rightarrow \quad \max\{f_1(x), f_2(x)\} \text{ is convex}$

• Affine transformation of domain:

f(x) is convex $\Rightarrow f(Ax + b)$ is convex

Some Commonly Used Convex Functions

- Piecewise-linear functions: $\max_i \{a_i^T x + b_i\}$ is convex in x
- Quadratic functions: $f(x) = x^T Q x + 2q^T x + c$ is convex iff $Q \ge 0$
- Piecewise-quadratic functions: $\max_i \{x^T Q_i x + q_i^T x + c_i\}$ is convex in x if $Q_i \ge 0$

• Norm functions:
$$||x||_k = \left(\sum_{i=1}^n |x_i|^k\right)^{1/k}$$
, where $k \in [1,\infty)$

- Convex functions over matrices: $\operatorname{Tr}(X)$, $\lambda_{\max}(X)$ are convex on $X = X^T$; and $-\log \det(X)$ is convex on the set $\{X \mid X = X^T, X \ge 0\}$
- Logarithmic barrier functions: $f(x) = \sum_{i=1}^{m} \log(b_i a_i^T x)^{-1}$ is convex over $\mathcal{P} = \{x \mid a_i^T x \leq b_i, \ 1 \leq i \leq m\}$

CS-570 Statistical Signal Processing University of Crete, Computer Science Department

37

Convex Optimization Problems

$$\begin{array}{ll} \mbox{minimize} & f_0(x) \\ \mbox{subject to} & f_i(x) \leq 0, \quad i=1,\ldots,m \\ & h_i(x)=0, \quad i=1,\ldots,p \end{array}$$

- $x \in \mathbf{R}^n$ is the optimization variable
- $f_0: \mathbf{R}^n \to \mathbf{R}$ is the objective or cost function
- $f_i: \mathbf{R}^n \to \mathbf{R}, i = 1, \dots, m$, are the inequality constraint functions
- $h_i: \mathbf{R}^n \to \mathbf{R}$ are the equality constraint functions

optimal value:

Spring Semester 2019

$$p^{\star} = \inf\{f_0(x) \mid f_i(x) \le 0, \ i = 1, \dots, m, \ h_i(x) = 0, \ i = 1, \dots, p\}$$

- $p^{\star} = \infty$ if problem is infeasible (no x satisfies the constraints)
- $p^{\star} = -\infty$ if problem is unbounded below

A set T of real numbers (red and green circles), a subset S of T (green circles), and the infimum of S. Note that for finite, totally ordered sets the infimum and the <u>minimum</u> are equal.

Optimal and locally optimal points

- x is **feasible** if $x \in \operatorname{dom} f_0$ and it satisfies the constraints
- a feasible x is optimal if $f_0(x) = p^*$; X_{opt} is the set of optimal points
- \boldsymbol{x} is **locally optimal** if there is an R>0 such that \boldsymbol{x} is optimal for

$$\begin{array}{ll} \text{minimize (over } z) & f_0(z) \\ \text{subject to} & f_i(z) \leq 0, \quad i=1,\ldots,m, \quad h_i(z)=0, \quad i=1,\ldots,p \\ & \|z-x\|_2 \leq R \end{array}$$

examples (with n = 1, m = p = 0)

• $f_0(x) = 1/x$, $\operatorname{dom} f_0 = \mathbf{R}_{++}$: $p^* = 0$, no optimal point

•
$$f_0(x) = -\log x$$
, $\operatorname{dom} f_0 = \mathbf{R}_{++}$: $p^* = -\infty$

- $f_0(x) = x \log x$, $\operatorname{dom} f_0 = \mathbf{R}_{++}$: $p^* = -1/e$, x = 1/e is optimal
- $f_0(x) = x^3 3x$, $p^{\star} = -\infty$, local optimum at x = 1

Feasibility problem

$$\begin{array}{ll} \mbox{find} & x \\ \mbox{subject to} & f_i(x) \leq 0, \quad i=1,\ldots,m \\ & h_i(x)=0, \quad i=1,\ldots,p \end{array}$$

can be considered a special case of the general problem with $f_0(x) = 0$:

$$\begin{array}{ll} \mbox{minimize} & 0 \\ \mbox{subject to} & f_i(x) \leq 0, \quad i=1,\ldots,m \\ & h_i(x)=0, \quad i=1,\ldots,p \end{array}$$

- $p^{\star} = 0$ if constraints are feasible; any feasible x is optimal
- $p^{\star} = \infty$ if constraints are infeasible

Convex optimization problem

standard form convex optimization problem

$$\begin{array}{ll} \text{minimize} & f_0(x) \\ \text{subject to} & f_i(x) \leq 0, \quad i = 1, \dots, m \\ & a_i^T x = b_i, \quad i = 1, \dots, p \end{array}$$

- f_0, f_1, \ldots, f_m are convex; equality constraints are affine
- problem is quasiconvex if f_0 is quasiconvex (and f_1, \ldots, f_m convex)

often written as

$$\begin{array}{ll} \mbox{minimize} & f_0(x) \\ \mbox{subject to} & f_i(x) \leq 0, \quad i=1,\ldots,m \\ & Ax=b \end{array}$$

important property: feasible set of a convex optimization problem is convex

Lagrangian

standard form problem (not necessarily convex)

$$\begin{array}{ll} \mbox{minimize} & f_0(x) \\ \mbox{subject to} & f_i(x) \leq 0, \quad i=1,\ldots,m \\ & h_i(x)=0, \quad i=1,\ldots,p \end{array}$$

variable $x \in \mathbf{R}^n$, domain \mathcal{D} , optimal value p^\star

Lagrangian: $L: \mathbb{R}^n \times \mathbb{R}^m \times \mathbb{R}^p \to \mathbb{R}$, with $\operatorname{dom} L = \mathcal{D} \times \mathbb{R}^m \times \mathbb{R}^p$,

$$L(x, \lambda, \nu) = f_0(x) + \sum_{i=1}^m \lambda_i f_i(x) + \sum_{i=1}^p \nu_i h_i(x)$$

- weighted sum of objective and constraint functions
- λ_i is Lagrange multiplier associated with $f_i(x) \leq 0$
- ν_i is Lagrange multiplier associated with $h_i(x) = 0$

Spring Semester 2019

Lagrange dual function

Lagrange dual function: $g: \mathbb{R}^m \times \mathbb{R}^p \to \mathbb{R}$,

$$g(\lambda,\nu) = \inf_{x \in \mathcal{D}} L(x,\lambda,\nu)$$
$$= \inf_{x \in \mathcal{D}} \left(f_0(x) + \sum_{i=1}^m \lambda_i f_i(x) + \sum_{i=1}^p \nu_i h_i(x) \right)$$

g is concave, can be $-\infty$ for some λ , u

lower bound property: if $\lambda \succeq 0$, then $g(\lambda, \nu) \leq p^{\star}$

proof: if \tilde{x} is feasible and $\lambda \succeq 0$, then

$$f_0(\tilde{x}) \ge L(\tilde{x}, \lambda, \nu) \ge \inf_{x \in \mathcal{D}} L(x, \lambda, \nu) = g(\lambda, \nu)$$

minimizing over all feasible \tilde{x} gives $p^* \ge g(\lambda, \nu)$

Karush-Kuhn-Tucker (KKT) conditions

the following four conditions are called KKT conditions (for a problem with differentiable f_i , h_i):

- 1. primal constraints: $f_i(x) \leq 0$, $i = 1, \ldots, m$, $h_i(x) = 0$, $i = 1, \ldots, p$
- 2. dual constraints: $\lambda \succeq 0$
- 3. complementary slackness: $\lambda_i f_i(x) = 0$, $i = 1, \dots, m$
- 4. gradient of Lagrangian with respect to x vanishes:

$$\nabla f_0(x) + \sum_{i=1}^m \lambda_i \nabla f_i(x) + \sum_{i=1}^p \nu_i \nabla h_i(x) = 0$$

